
	

	

	

	

	

ZDPLASKIN	v.	2.0	
Zero-Dimensional	PLASma	KINetics	solver	

	
	

	

	

USER’S	GUIDE	
	

	

	

	

	

	

	

	

	

University	of	Toulouse,	LAPLACE,	CNRS-UPS-INP,	France	

ABB	Corporate	Research,	Switzerland	

December	2016	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 2	

	

	
ABOUT	...	3	

SYSTEM	REQUIREMENTS	...	3	

WHO	CAN	USE	ZDPlasKin?	...	3	

PHYSICAL	MODEL	..	3	

GENERAL	STRUCTURE	...	4	

STRUCTURE	OF	INPUT	DATA	FILE	...	5	

Section	ELEMENTS	..	5	

Section	SPECIES	..	6	

Section	BOLSIG	..	6	

Section	REACTIONS	..	8	

PREPROCESSOR	..	9	

ZDPlasKin	MODULE	...	9	

A	brief	review	of	main	routines	..	10	

The	list	of	defined	public	variables	...	11	

The	list	of	public	subroutines	..	11	

DATA	SAVE	AND	VISUALIZATION	OF	RESULTS	..	15	

COMPILATION	...	15	

FREQUENTLY	ASKED	QUESTIONS	...	16	

COPYRIGHT	STATEMENT	..	17	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 3	

ABOUT	
	

ZDPlasKin	 is	a	Fortran	90	module	designed	to	 follow	the	time	evolution	of	 the	species	
densities	 and	 gas	 temperature	 in	 non-thermal	 plasmas	 with	 an	 arbitrarily	 complex	
chemistry.		A	Boltzmann	equation	solver	(BOLSIG+)	incorporated	in	ZDPlasKin	provides	
values	of	electron	transport	and	rate	coefficients	when	the	electron	energy	distribution	
function	is	non-Maxwellian.		

ZDPlasKin	 is	 now	 available	 as	 freeware	 and	 can	 be	 downloaded	 from	 the	 following	
address:	www.zdplaskin.laplace.univ-tlse.fr.	

SYSTEM	REQUIREMENTS	
	

ZDPlasKin	has	been	tested	and	runs	well	on	Microsoft	Windows,	Mac	OS	X	or	Linux	OS.		
A	 Fortran	 90	 compiler	 is	 required.	 	 We	 have	 tested	 ZDPlasKin	 with	 the	 following	
compilers:	 Intel	 Fortran,	 Lahey/Fujitsu	 Fortran,	 Compaq	 Fortran	 and	 gFortran	
(available	as	freeware).	

WHO	CAN	USE	ZDPlasKin?	
	

The	user	must	be	able	to	write	simple	Fortran	code,	either	adapting	the	example	master	
codes	 or	 starting	 from	 scratch	 and	 making	 calls	 to	 ZDPlasKin	 following	 the	 call	
structures	defined	in	the	user's	guide.	

A	 typical	 user	with	 some	 knowledge	 of	 Fortran	 can	 learn	 to	 use	 the	 basic	 features	 of	
ZDPlasKin	 in	 about	 one	 day.	 	 Making	 use	 of	 all	 the	 advanced	 features	 requires	more	
experience	and	familiarity	with	the	options	available	in	the	ZDPlasKin	library	routines.	

Several	demo	versions	of	ZDPlasKin	in	executable	format	are	available	for	downloading.		
These	are	intended	to	illustrate	the	kinds	of	problems	that	can	be	solved	and	provide	an	
overview	of	the	output	options.	

PHYSICAL	MODEL	
	

The	 time	 evolution	 of	 the	 species	 densities	 in	 a	 plasma	 can	 be	 formulated	 as	 a	 set	 of	
coupled	rate	equations.		In	ZDPlasKin,	the	time	evolution	of	[Ni],	density	of	species	i	=	1	
...	imax,	as	represented	in	eq.	(1),	is	determined	numerical	integration,	starting	with	some	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 4	

initial	 conditions	 defined	 by	 the	 user.	 	 The	 source	 terms	 Qij	 corresponding	 to	 the	
contributions	 from	different	processes	 j	 =	1	 ...	 jmax	 are	 constructed	automatically	 from	
information	provided	by	the	user	in	the	input	data	file.		The	source	terms	corresponding	
to	reaction	(2),	for	example,	are	constructed	using	with	reaction	rate	Rj	(3).		The	source	
terms	are	shown	explicitly	in	eq.	(4).	

	

The	evolution	of	the	gas	temperature	is	optionally	taken	into	account.		When	included,	it	
is	determined	from	the	solution	of	the	heat	transport	equation	in	the	form	given	in	(5)	
(adiabatic	 isometric	 approximation)	with	 known	 specific	 gas	 heat	 ratio	 g.	 The	 second	
term	 in	 the	 right	 side	 is	 Joule	heating	due	 to	 the	 electron	 current	 and	 corresponds	 to	
elastic	 election-neutral	 collisions.	 	 It	 is	 computed	 using	 the	 BOLSIG+	 solver.	 	 Joule	
heating	 due	 to	 the	 ion	 currents	 is	 assumed	 negligible,	 however,	 it	 can	 be	 easily	
implemented	into	the	user’s	master	code.	 	The	heat	source	term	Qsrc	can	be	optionally	
specified	by	user.	

GENERAL	STRUCTURE	
	

A	 2-step	 structure	 was	 chosen	 to	 minimize	 computational	 overhead	 and	 enhance	
execution	speed.	

	

Step	 I:	 The	 preprocessor	 converts	 the	 input	 text	 file	 into	 a	 customized	 Fortran	
module	 with	 the	 user-supplied	 input	 data	 for	 the	 plasma	 chemistry	
incorporated	directly	into	the	code.	

	

Step	II:	The	user	must	provide	a	short	master	code	to	call	ZDPlasKin	library	routines	
that	 perform	 the	 time	 integration	 and	 update	 electron	 transport	 and	 rate	
coefficients	using	BOLSIG+.	 	Output	files	are	written	and	diagnostic	routines	
are	 called	 from	 the	master	 code.	 	 The	master	 code	must	 be	 compiled	 and	
linked	with	the	ZDPlasKin	Fortran	routines.	

	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 5	

STRUCTURE	OF	INPUT	DATA	FILE	
	

The	input	data	file	consists	of	four	different	sections	as	described	below.		The	input	file	
is	 case	 non-sensitive	 and	 the	 lines	 starting	with	 (#)	 are	 treated	 as	 a	 comment.	 Every	
section	starts	with	the	NAME	of	the	section	and	ends	with	END	and	consists	of	one	or	a	
few	lines.		The	following	section	order	is	recommended	ELEMENTS	-	SPECIES	-	BOLSIG	
-	REACTIONS.		The	max	allowed	length	of	a	line	is	256	symbols.	

SECTION	NAME	 DESCRIPTION	

ELEMENTS	 A	list	of	chemical	elements	to	be	considered	in	the	problem.		

SPECIES	 A	list	of	species	to	be	considered.	

BOLSIG	
(optional)	

A	 list	 of	 species	 for	 BOLSIG+,	 a	 Boltzmann	 equation	 solver,	 that	
provides	values	of	electron	transport	and	rate	coefficients	 for	both	
Maxwellian	 and	 non-Maxwellian	 electron	 energy	 distribution	
function.	

REACTIONS	 A	list	of	reactions	with	corresponding	constant	rates.	

	

Section	ELEMENTS	
	

Contains	 a	 list	 of	 "element"	 names	 to	 be	 used	 in	 ZDPlasKin.	 	 The	 element	 names	 are	
ASCII	format	and	separated	by	one	or	more	spaces.		The	element	names	must	start	with	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 6	

a	letter	and	must	not	contain	a	(^),(”),(=)	or	(!)	symbol.	 	The	max	allowed	length	of	an	
element	name	is	124	symbols.		Element	(E)	is	always	supposed	to	be	electrons.	

Example:	

ELEMENTS	
Ar			E	
END	
	

N.B.:	 Here	 you	 can	 declare	 either	 the	 normal	 elements	 of	Mendeleev’s	 table	 (plus	 the	
electrons)	 or	 declare	 some	 virtual	 elements	 with	 other	 names	 to	 differentiate	 them.		
Virtual	 elements	 are	 a	 flexible	 tool	 for	 simulating	 various	 processes	 within	 this	 0D	
approach	 (e.g.	 diffusion	 losses	 can	 be	 approximated	 by	 an	 equivalent	 volume	 loss	 of	
species	X	 producing	 a	 species	X(w)	which	 represents	 particles	 having	 diffused	 to	 the	
walls.		In	this	case	X(w)	must	be	declared	as	a	species.)	

	

Section	SPECIES	
	

Contains	 the	 list	 of	 species	 used	 in	 following	 sections	REACTIONS	 and	BOLSIG.	 The	
species	must	not	contain	a	(”),	(=)	or	(!)	symbol.	 	The	max	allowed	length	of	a	species	
name	is	124	symbols.		Species	(E)	is	always	treated	as	electrons.		Excited	states	must	be	
preceded	 in	 parentheses	 or	 marked	 with	 an	 asterisk(s)	 after	 the	 species	 name,	 for	
example,	N2(A)	or	N2*.		The	positive/negative	ions	are	marked	as	(^+)	or	(^-)	after	the	
species	name,	for	example,	N4^+.	

A	species	name	can	be	organized	using	one	or	a	few	elementary	blocks	in	the	following	
order:	 ...	 [element	 name][number	 of	 elements][any	 of	 *,	 (),	 [],	 and	 {}][^+	 or	 ^-]		
N2(A)^+O2(a)^-H2(X[m])		if	an	example	of	complex	species.	

The	species	names	must	be	composed	of	the	element	names	declared	above.	

Example:			

SPECIES	
E			Ar			Ar*			Ar^+			Ar2^+	
END	
	

Section	BOLSIG	
	

This	is	an	optional	section	that	contains	the	list	of	species	to	be	used	in	the	calculation	of	
the	electron	energy	distribution	function	in	the	BOLSIG+	solver;	all	the	species	must	be	
present	in	section	SPECIES.		This	will	tell	the	solver	to	call	BOLSIG+	and	to	use	the	cross	
sections	 for	 the	 listed	 species	 in	 the	 solution	 of	 the	 Boltzmann	 equation.	 	 The	 max	
allowed	number	of	species	in	this	section	is	32.	

Available	options	in	the	section	are:	
• set	 electron-electron	 collisions	 NE/NGAS,	 where	 NE/NGAS	 electron-to-gas	

fraction	beyond	which	electron-electron	collisions	are	taken	 into	account	 in	the	
Boltzmann	solver	(the	default	value	is	10-5	and	the	maximum	value	is	1.0).		Note,	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 7	

this	 value	 can	 be	 changed	 during	 code	 execution	 using	 ZDPlasKin_set_config	
routine;	

• set	 min	 field	 EMIN,	 set	 max	 field	 EMAX,	 set	 max	 points	 IMAX,	 and	 set	
accuracy	RTOL	 to	manage	 the	 caching	mechanism	 of	 BOLSIG+	 solver	 (default	
values	are	10-1	Td,	103	Td,	103,	and	10-3,	respectively);	

• set	 dbfile	 FILENAME	 to	 select	 the	 database	 filename	 containing	 the	 cross	
sections	(default	is	bolsigdb.dat).	FILENAME	must	be	in	capital	letters	for	UNIX	
systems;	

• one	or	multiple	DENSITY	<A>	+=		which	adds	all	 set	of	electron	collisional	
processes	of	species	<A>	to	the	set	of	processes	for	species	.	Typically,	it	can	
be	used	for	avoiding	electron	cross-section	database	doubling	for	similar	species,	
for	example,	the	ground	state	and	vibrational	states	of	a	molecule.	

	
We	 implemented	 a	 caching	mechanism	 for	 the	 results	 of	 BOLSIG+	 solver	 in	 order	 to	
increase	computational	affectivity	of	the	package.		By	default,	an	exponential	field	mesh	
is	generated:	 EN(i) = EMIN ⋅exp(A ⋅ i) ,	 i	=	0	…	IMAX,	where	 A = ln(1+ RTOL) 	constant	 is	
chosen	to	satisfy	relation	EN(i+1) / EN(i) =1+ RTOL .		In	this	case,	the	maximum	number	
of	points	is	equal	to	 IMAX = A−1 ⋅ ln(EMAX / EMIN) .	 	BOLSIG+	solver	is	used	to	compute	
required	 rates	 only	 once	 for	 every	 EN(i) 	 point	 if	 other	parameters	 (gas	 temperature,	
fractional	composition,	etc)	have	not	changed	too	much	(relative	changes	are	less	than	
RTOL).	 	 For	 a	 filed	 below	EMIN	 the	 code	 computes	 rates	 for	 this	minimum	 field	 and	
extrapolates	the	results	linearly.		This	caching	mechanism	can	be	switched	off	by	setting	
IMAX	to	0.	
	
Example:	

BOLSIG	
Ar			Ar*	
set	electron-electron	collisions	1.0D-3	
set	max	points	0	
set	dbfile	MYDB.DAT	
END	
	

In	some	cases,	 the	set	of	 species	 in	BOLSIG	 section	 is	 reduced	with	respect	 to	 the	 full	
species	 set	 in	 section	 SPECIES.	 	 It	 means	 that	 some	 of	 species	 are	 not	 used	 when	
BOLSIG+	solver	defines	electron	transport	parameters	and	reaction	rates.			A	warning	is	
issued	 as	 soon	 as	 the	 reduced	 density	 (normalized	 by	 the	 total	 gas	 density)	 of	 such	
“missing”	 species	 exceeds	 some	 critical	 level	 (1E-3	 by	 default).	 	 This	 can	 affect	 the	
accuracy	of	calculations.	

	

Cross	section	data	
	

Starting	from	version	1.2b	we	do	not	more	distribute	electron	cross	sections.	Please	use	
the	 following	site	 for	downloading:	www.lxcat.net.	 	All	download	 from	this	site	data	 is	
compatible	with	ZDPlasKin	package.		Before	upgrading	cross-section	data	or	making	any	
changes	of	this	data	file	please	consult	the	page	HOW	TO	USE.	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 8	

Users	 are	 encouraged	 to	 reference	 the	 original	 data	 in	 publications.	 	 Users	 are	 also	
strongly	 encouraged	 to	 check	 the	 data	 carefully	 by	 comparing	 with	 the	 original	
references.	Please	let	us	know	if	you	see	any	discrepancies.		

	

Section	REACTIONS	
	

The	main	 section	 contains	 a	 list	 of	 reactions	 in	 format	R1	 +	 R2	 +	 ...	 =>	 P1	 +	 P2	 +	 ...	
followed	 by	 several	 spaces,	 a	 sign	 (!)	 and	 a	 reaction	 rate	 with	 a	 length	 of	 up	 to	 130	
symbols.	 There	 are	 no	 limits	 for	 the	 number	 of	 reactants	 or	 products	 per	 reaction;	
neither	is	there	a	limit	for	the	total	number	of	reactions	in	the	input	file.	

Reaction	and	product	terms	R	and	P	can	be	one	from	

• the	 species	 defined	 in	 section	 SPECIES;	 a	 short	 version	 is	 also	 possible,	 for	
example,	2	N2	to	replace	N2	+	N2;	

• xxx_K	 or	 xxx_eV	 record	 with	 xxx	 equal	 to	 a	 non-negative	 value	 of	 energy	
released	(in	right,	products,	side)	or	energy	absorbed	(in	left,	reactants,	side)	for	
exothermic	and	endothermic	reactions,	respectively;	

• ANY_SPECIES,	ANY_NEUTRAL,	ANY_ION_POSITIVE,	 or	ANY_ION_NEGATIVE	 to	
indicate	any,	neutral,	positive	or	negative	(except	electrons)	species,	respectively.	

	
The	reaction	rate	following	the	(!)	symbol	can	any	of	the	following:	

• an	expression	in	Fortran	90	[s-1,	cm3	s-1,	cm6	s-1,	...];	
• BOLSIG+	 A	 ->	 B,	 to	 indicate	 that	 corresponding	 constant	 rates	must	 be	 taken	

from	 BOLSIG+	 solver.	 An	 expression	 in	 Fortran	 can	 be	 used	 just	 before	 the	
BOLSIG+	record.	

	
Example:	

REACTIONS	
E	+	Ar	=>	2E	+	Ar^+			!			1.0d-7	
E	+	Ar	=>	2E	+	Ar^+			!													BOLSIG+	Ar	->	Ar^+	
E	+	Ar	=>	2E	+	Ar^+			!			0.1	*	BOLSIG+	Ar	->	Ar^+	
END	
	
It	 is	possible	 to	use	brief	 form	 for	 similar	 reactions	using	group	syntax.	 	A	group	@G,	
wherein	G	is	any	alphabetical	symbol,	will	be	enrolled	according	to	supplied	group	list.		
Group	 list	 has	 to	 present	 in	 the	 following	 line	 in	 form	@G	 =	 A	 B	 C	 …,	 i.e.	 a	 list	 of	
substitutions	 delimited	 with	 one	 or	 many	 spaces.	 	 Multiple	 groups	 can	 be	 used	
simultaneously	under	conditions	of	equal	number	of	elements	in	every	group.	

Example:	

REACTIONS	
E	+	Ar^+	+	@M		=>		Ar	+	@M			!			1.0d-7	*	@R	
		@M	=	Ar										Ar*										Ar**	
		@R		=	1.0d0				1.0d-1				1.0d-2	
END	
	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 9	

	
The	lines	starting	with	($)	will	be	copied	to	the	output	Fortran	module	“as	is”;	the	user	
can	 put	 here	 any	 Fortran	 structures,	 define	 variables	 and	 functions	 of	 external	
parameters	

• Time,	the	time	moment	[s]	
• Tgas,	the	gas	temperature	[K]	
• EN,	the	reduced	electric	field	[Td]	
• OmegaN,	the	reduced	angular	frequency	[cm3	s-1]	
• Te,	the	electron	temperature	[K]	
• Vdr,	the	electron	drift	velocity	[cm	s-1]	
• De,	the	electron	diffusion	coefficient	[cm2	s-1]	
• ANY_SPECIES,	ANY_NEUTRAL,	ANY_ION_POSITIVE,	or	ANY_ION_NEGATIVE	

[cm-3]	to	indicate	any,	neutral,	positive	or	negative	(except	electrons)	species,	
respectively.	

	
Variables	Te,	Vdr	 and	De	 are	 not	 even	 defined	 until	BOLSIG	 section	 is	 configured	 in	
input	file.	
	
Example:	

REACTIONS	
$	double	precision	::	my_rate	
$	my_rate	=	1.0D-10	*	Tgas/300.d0	*	Te	
E	+	Ar	->	2E	+	Ar^+			!			my_rate	
END	
	

N.B.:	We	note	here	that	ZDPlasKin	package	operates	with	direct	reaction	processes	only	
and	does	not	construct	a	list	of	inverse	processes	at	the	moment.	

PREPROCESSOR	
	

The	 PREPROCESSOR	 program	 (included	 in	 ZDPlasKin	 package)	 translates	 the	 input	
data	file	into	a	Fortran	code.		The	semantic	analysis	used	by	the	PREPROCESSOR	checks	
that	each	element,	 species	and	reaction	 is	unique,	and	 that	 the	charge	and	elementary	
composition	 is	balanced	 in	every	reaction.	 	Error	messages	are	returned	 to	 the	user	 if	
these	conditions	are	not	respected	in	the	input	data.	

ZDPlasKin	MODULE	
	

ZDPlasKin	module	 is	 generated	 by	PREPROCESSOR	 utility	 and	 then	 can	 be	 used	 in	 a	
master	 code.	 	 It	 gives	 a	 set	 of	 subroutines	 that	 will	 be	 used	 for	 plasma-chemical	
simulations.	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 10	

Basically,	the	minimum	user	code	must	look	like	following:	

program	test	
use	ZDPlasKin		 	 	 !		 to	use	module	ZDPlasKin	
call	ZDPlasKin_init()	 	 	 !		 initialization	of	the	module	
call	ZDPlasKin_set_conditions()	 !		 set	conditions	
call	ZDPlasKin_set_density()	 	 !		 set	initial	densities	
call	ZDPlasKin_timestep()	 	 !		 main	call	-	time	integration	
end	program	test	

A	brief	review	of	main	routines	
	

A	call	to	the	subroutine	init()	initializes	the	module	and	must	be	made	before	calling	any	
of	the	other	ZDPlasKin	functions.	

The	main	data	structures	are	accessible	from	the	master	code,	either	directly	as	public	
variables	and/or	through	function	calls.		For	example,	species	densities	are	stored	in	the	
density(i)	array,	and	the	user	can	use	this	array	 in	the	master	code	to	directly	set	(or	
get)	 values.	 	 Alternatively,	 the	 user	 can	 set	 (or	 get)	 values	 of	 the	 species	 densities	 by	
calling	the	set(get)_density("X",dens)	subroutine.	 	ZDPlasKin	allows	the	user	to	work	
with	species	names	"X"	 rather	 than	a	corresponding	array	 index.	 	 If	needed,	 the	array	
index	 i	 of	 species	 X	 is	 available	 from	 the	 species_name(:)	 array	 or	 by	 calling	 the	
get_species_index("X",i)	subroutine.	

The	 parameters	 specifying	 the	 conditions	 of	 calculations	 can	 be	 set	 or	 accessed	 (get)	
with	set(get)_conditions()	routines.	Required	parameters	are	the	gas	temperature	and	
the	 reduced	 electric	 field;	 optional	 parameters	 include	 the	 specific	 heat	 gas	 ratio.	 	 A	
logical	 switch	 is	 used	 to	 signal	 that	 the	 evolution	 of	 the	 gas	 temperature	 should	 be	
included	in	the	calculation.	

The	 principal	 subroutine	 supplied	 for	 the	 time	 integration	 of	 the	 rate	 equations	 is	
timestep(),	which	calls	DVODE_F90,	an	implicit	and	usually	very	efficient	and	accurate	
integration	routine.		VODE	is	a	package	of	subroutines	for	the	numerical	solution	of	the	
initial-value	 problem	 for	 systems	 of	 first-order	 ordinary	 differential	 equations.	 	 The	
package	 uses	 the	 fixed-leading-coefficient	 Backward	 Differentiation	 Formula	 (BDF)	
method	 for	 stiff	 systems.	 	 An	 alternate	 time	 integration	 routine	 is	 the	
timestep_explicit()	 subroutine	which	 is	 an	 explicit,	 first-order	 accurate,	 Euler	 solver.		
The	 latter	 is	 recommended	 only	 for	 very	 specific	 applications	 (such	 as	 an	 integration	
with	a	small	fixed	timestep).	

Two	 further	 routines	 get_density_total()	 and	 get_rates()	 provide	 output	 useful	 for	
analysis:	 the	 total	 density	 of	 all	 species	 -	 neutral	 and	 charged	 particle	 species	 -	 total	
charge	 density,	 species	 source	 terms,	 reaction	 rates	 and	 a	 matrix	 of	 source	 terms,	
respectively.	

Subroutine	write_file()	 writes	 an	 output	 list	 of	 species	 and	 reactions	 as	 well	 as	 the	
matrix	of	reaction	source	terms	to	the	corresponding	files.	

The	only	 configuration	subroutine	 in	 the	module	 is	set_config().	 	 It	 allows	setting	 the	
absolute	and	relative	errors	for	the	DVODE	solver,	or	it	can	be	used	to	manage	the	silent	
operating	mode	(no	screen	output)	and	the	regime	of	statistic	acquisition.	

	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 11	

The	list	of	defined	public	variables	
	

integer,	parameter	::	 species_max	 !	number	of	species	

integer,	parameter	::	 reactions_max	 !	number	of	reactions	

integer,	parameter	::	 species_length	 !	max	length	of	species	names	

integer,	parameter	::	 reactions_length	 !	max	length	of	reaction	lines	

double	precision	::	 density(species_max)	 !	table	of	densities,	cm-3	

integer	::	 species_charge(species_max)	 !	species	charge	=	+1	/	0	/	-1	

character(species_length)	::	 species_name(species_max)	 !	table	of	species	names	

character(reactions_length)	::	 reaction_sign(reactions_max)	 !	table	of	reaction	lines	

logical	::	 lreaction_block(reactions_max)	 !	selective	reaction	blocking	

integer,	parameter	::	 species_electrons	 !	index	of	electrons	(if	defined)	

character(32),	allocatable	::	 qtplaskin_user_names(:)	 !	user-defined	variables	for	
QtPlaskin	GUI	output	double	precision,	allocatable	::		 qtplaskin_user_data(:)	

	

The	list	of	public	subroutines	
	

subroutine	ZDPlasKin_init()	
Initialization,	must	be	called	before	any	use	of	ZDPlasKin	functions.	

subroutine	ZDPlasKin_set_density(str,DENS,	LDENS_CONST)	
Sets	density	DENS	for	species	str,	optional	flag	LDENS_CONST	fixes	the	density	at	
a	given	 level	 (no	 time	 integration	of	 this	 species;	default	value	 is	FALSE).	 	This	
subroutine	can	be	called	at	any	time,	not	only	for	the	initialization.	

character(*),intent(in)		 	 	 	 ::	str		 	 	 !	species	
double	precision,	optional,	intent(in)	 	 ::	DENS			 	 !	cm-3	
logical,	optional,	intent(in)	 	 	 ::	LDENS_CONST		 !	true/false	

subroutine	ZDPlasKin_get_density(str,DENS,	LDENS_CONST)	
Gets	density	DENS	 for	 species	str,	 optional	 flag	LDENS_CONSTgets	 information	
about	the	fixed	density.	

character(*),	intent(in)		 	 	 	 ::	str	 	 	 !	species	
double	precision,	optional,	intent(out)	 	 ::	DENS			 	 !	cm-3	
logical,	optional,	intent(out)	 	 	 ::	LDENS_CONST		 !	true/false	

subroutine	ZDPlasKin_get_species_index(str,i)	
Gets	index	of	species	str	for	direct	use	of	the	density(i	=	1	:	species_max)	array.	

character(*),	intent(in)		 	 	 	 ::	str	 	 	 !	species	
integer,	intent(out)	 	 	 	 ::	i	 	 	 !	array	index	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 12	

subroutine	ZDPlasKin_set_conditions()1	
Sets	gas	temperature,	reduced	electric	field,	reduced	angular	frequency,	electron	
temperature,	 specific	 heat	 gas	 ratio	 (default	 value	 is	1.4),	 heat	 source	 and	 gas	
heating	mode	 (FALSE).	 	 Optional	 logical	 key	 SOFT_RESET	 makes	 soft	 reset	 of	
DVODE	solver	keeping	all	user	data	and	configurations	unchanged.	 	This	can	be	
useful	 if	 a	 fast	 change	 of	 input	 parameters	 is	 occurred	 (much	 faster	 than	 the	
typical	time	of	density	changes).		It	is	recommended	not	do	this	regularly	since	it	
can	 have	 a	 significant	 impact	 on	 the	 efficiency	 of	 the	 package.	 Using	
ELEC_TEMPERATURE	assumes	Maxwellian	energy	distribution	for	electrons;	the	
value	of	reduced	field	is	calculated	in	this	case	to	satisfy	electron	energy	balance.	

double	precision,	optional,	intent(in)	 ::	GAS_TEMPERATURE	 	 !	K	
::	REDUCED_FIELD	 	 !	Td	
::	REDUCED_FREQUENCY		 !	cm3	s-1	
::	ELEC_TEMPERATURE	 	 !	K	
::	SPEC_HEAT_RATIO	 	 !	1	
::	HEAT_SOURCE																																	!	W	cm-3	

logical,		optional,	intent(in)	 	 ::	GAS_HEATING	 	 	 !	true/false	
	 	 	 	 	 ::	SOFT_RESET	 	 	 !	true/false	

subroutine	ZDPlasKin_get_conditions()	
Gets	 gas	 temperature	 GAS_TEMPERATURE,	 reduced	 electric	 field	
REDUCED_FIELD,	 reduced	 angular	 frequency	REDUCED_FREQUENCY,	 electron	
temperature	 ELEC_TEMPERATURE,	 drift	 velocity	 ELEC_DRIFT_VELOCITY	 and	
diffusion	 ELEC_DIFF_COEFF	 coefficients,	 reduced	 mobility	 ELEC_MOBILITY_N,	
energy	 mobility	 ELEC_MU_EPS_N	 and	 energy	 diffusion	 coefficient	
ELEC_DIFF_EPS_N,	electron	reduced	collisional	frequency	ELEC_FREQUENCY_N,	
electron	 reduced	 total	 ELEC_POWER_N,	 elastic	 ELEC_POWER_ELASTIC_N	 and	
inelastic	 ELEC_POWER_INELASTIC_N	 powers.	 	 The	 electron	 temperature	 is	
defined	 as	 2/3	 of	 average	 energy	 determined	 from	 Boltzmann	 calculation.		
Electron	 energy	 distribution	 function	 can	 be	 returned	 in	 table	 form	
ELEC_EEDF(1:2,1:jmax)	 where	 ELEC_EEDF(1,:)	 and	 ELEC_EEDF(2,:)	 return	 the	
energies	and	the	values	of	 the	EEDF,	respectively;	 jmax	=	128	 is	recommended.	
Variables	ELEC_*	are	only	available	if	BOLSIG	section	presents	in	input	file.	

double	precision,	optional,	intent(out)	 ::	GAS_TEMPERATURE	 	 !	K	
::	REDUCED_FIELD	 	 !	Td	
::	REDUCED_FREQUENCY		 !	cm3	s-1	
::	ELEC_TEMPERATURE	 	 !	K	
::	ELEC_DRIFT_VELOCITY		 !	cm	s-1	
::	ELEC_DIFF_COEFF	 	 !	cm2	s-1	
::	ELEC_MOBILITY_N																									!	cm-1	V-1	s-1	
::	ELEC_MU_EPS_N																										 !	cm-1	V-1	s-1	
::	ELEC_DIFF_EPS_N																										 !	cm-1	s-1	
::	ELEC_FREQUENCY_N	 	 !	cm3	s-1	
::	ELEC_POWER_N	 	 !	eV	cm3	s-1	
::	ELEC_POWER_ELASTIC_N	 !	eV	cm3	s-1	
::	ELEC_POWER_INELASTIC_N	 !	eV	cm3	s-1	
::	ELEC_EEDF(:,:)		 	 !	eV	-	eV-3/2	
	

																																																								

1	Here	and	below,	a	subroutine	with	optional	in/out	variables	can	be	used	as	follows,	for	
example:	call	ZDPlasKin_set_conditions(GAS_TEMPERATURE	=	my_temperature).	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 13	

subroutine	ZDPlasKin_timestep(time,dtime)	
Central	subroutine.		Makes	time	integration	from	time	to	time	+	dtime	using	the	
DVODE90	 solver.	 	 The	 densities	 and	 conditions	 must	 be	 set	 before	 using	 this	
subroutine.		Here	it	is	advised	not	to	put	time	steps	too	big;	10-6	s	is	often	a	good	
maximum	value.		We	also	note	that	any	changes	in	the	species	densities	in	user’s	
master	 code	 cause	 additional	 memory	 re-allocation	 procedures	 in	 DVODE90	
solver;	in	this	case	the	present	subroutine	can	be	less	efficient	than	explicit	Euler	
method	(see	below).	

double	precision,	intent(in)				 	 ::	time	 	 	 	 !	s	
double	precision,	intent(inout)	 	 ::	dtime	 	 	 	 !	s	

subroutine	ZDPlasKin_timestep_explicit(time,dtime,error_max,density_min)	
Alternative	 routine;	 makes	 time	 integration	 from	 time	 to	 time	 +	 dtime	 using	
explicit	 Euler	 method.	 	 Variables	 error_max	 and	 density_min	 -	 maximum	
relative	density	change	and	the	minimum	absolute	density	-	control	the	number	
of	 internal	 steps	 keeping	 D[N]	 /	 ([N]	 +	 density_min)	 <	 error_max	 for	 any	
internal	 timestep	 integration.	 	Optional	number	of	 internal	 steps	 is	used	 to	 call	
ZDPlasKin_timestep()	 routine	 instead	 if	 the	 required	 number	 of	 timesteps	
exceeds	SWITCH_IMPLICIT.	

double	precision,	intent(in)				 	 ::	time	 	 	 	 !	s	
double	precision,	intent(inout)	 	 ::	dtime	 	 	 	 !	s	
double	precision,	intent(in)	 	 ::	error_max	 	 	 !	1	

::	density_min	 	 	 !	cm-3	
double	precision,	optional,	intent(in)	 ::	SWITCH_IMPLICIT	 	 !	number	of	steps	

subroutine	ZDPlasKin_get_density_total()	
Gets	 total	 density	 of	 all,	 neutral	 species,	 positive	 and	 negative	 ions	 and	 total	
charge	density	(in	elementary	charges).	

double	precision,	optional,	intent(out)	 ::	ALL_SPECIES	 	 	 !	cm-3	
::	ALL_NEUTRAL		 	 !	cm-3	
::	ALL_ION_POSITIVE	 	 !	cm-3	
::	ALL_ION_NEGATIVE	 	 !	cm-3	
::	ALL_CHARGE	 	 	 !	cm-3	

subroutine	ZDPlasKin_get_rates()	
Get	 species	 source	 terms	Qi	 defined	 in	 equation	 (4),	 reaction	 rates	Rj	 (3)	 and	
matrix	 of	 reactions	 source	 terms	 (should	 be	 used	 after	 the	 main	 subroutine	
ZDPlasKin_timestep()	to	update	values).		Variables	MEAN_*	mean	time	averaging	
starting	 from	 the	 last	 call	 ZDPlasKin_set_config(STAT_ACCUM	 =	 .true.);	 they	
cannot	be	used	without	this	call.	

double	precision,	optional,	intent(out)	 ::	SOURCE_TERMS(species_max)	 !	cm-3	s-1	
::	REACTION_RATES(reactions_max)	 	 	 	 !	cm-3	s-1	
::	SOURCE_TERMS_MATRIX(species_max,	reactions_max)	 	 !	cm-3	s-1	
::	MEAN_DENSITY(species_max)	 	 	 	 	 !	cm-3	
::	MEAN_SOURCE_TERMS	(species_max)	 	 	 	 !	cm-3	s-1	
::	MEAN_REACTION_RATES(reactions_max)	 	 	 !	cm-3	s-1	
::	MEAN_SOURCE_TERMS_MATRIX(species_max,	reactions_max)	 !	cm-3	s-1	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 14	

subroutine	ZDPlasKin_set_config()	
Sets	 internal	 configuration	 with	ATOL	 absolute	 and	RTOL	 relative	 errors,	 the	
SILENCE_MODE	 flag	 for	 silent	 operating	 mode	 (reduced	 screen	 output),	 the	
regime	 of	 statistic	 acquisition	 STAT_ACCUM	 (see	 ZDPlasKin_write_file	 and	
ZDPlasKin_get_rates).	 QTPLASKIN_SAVE	 allows	 auto	 saving	 of	 results	 in	
QtPlaskin	 compatible	 format.	 	 Every	 operation	with	 statistic	 acquisition	 in	 this	
routine	 makes	 a	 reset	 of	 accumulated	 results.	 	 The	 electron-to-gas	 fraction	
beyond	 which	 electron-electron	 collisions	 are	 taken	 into	 account	 in	 the	
Boltzmann	 solver	 can	 be	 changed	 BOLSIG_EE_FRAC.	 	 Logical	 flag	
BOLSIG_IGNORE_GAS_TEMPERATURE	 allows	 BOLSIG+	 solver	 to	 do	 not	
recalculate	the	electron	rates	when	the	gas	temperature	changes.	

double	precision,	optional,	intent(in)	 ::	ATOL	 	 	 	 !	cm-3	
::	RTOL	 	 	 	 !	1	
::	BOLSIG_EE_FRAC	 	 !	1	

logical,	optional,	intent(in)	 	 ::	SILENCE_MODE	
::	STAT_ACCUM	
::	QTPLASKIN_SAVE	
::	BOLSIG_IGNORE_GAS_TEMPERATURE	

subroutine	ZDPlasKin_write_file()	
Saves	species	and	reactions	lists	in	the	files	FILE_SPECIES	and	FILE_REACTIONS,	
respectively,	 and	 the	 matrix	 of	 reaction	 source	 terms	 FILE_SOURCE_MATRIX	
(the	 matrix	 can	 be	 written	 only	 if	 the	 STAT_ACCUM	 flag	 is	 activated	 in	 the	
previous	subroutine.		This	flag	can	be	activated	at	any	time,	and	then	calling	this	
subroutine	 to	write	 the	matrix	 file	will	write	 the	average	source	 terms	 for	each	
species	 and	 for	 each	 reaction).	This	 routine	uses	Fortran	 flow	with	unit	 =	5	by	
default	that	can	be	changed	by	optional	FILE_UNIT	variable.	

character(*),	optional,	intent(in)	 	 ::	FILE_SPECIES	
character(*),	optional,	intent(in)	 	 ::	FILE_REACTIONS	
character(*),	optional,	intent(in)	 	 ::	FILE_SOURCE_MATRIX	
integer,	optional,	intent(in)	 	 ::	FILE_UNIT	

subroutine	ZDPlasKin_write_qtplaskin(time,	LFORCE_WRITE)	
Saves	pre-defined	 and	user-specific	 data	 in	qt_*.txt	 files	 in	 a	 format	 compatible	
with	QtPlaskin	graphical	interface.		The	route	writes	output	data	if	some	level	of	
relative	 change	 of	 densities	 or	 other	 parameters	 from	 the	 previous	 output	 is	
reached	 (10-2	 by	 default).	 	 Optional	 LFORCE_WRITE	 logical	 variable	 allows	
controlling	output	frequency.	

double	precision,	intent(in)	 	 ::	FILE_SPECIES	
logical,	optional,	intent(in)		 	 ::	LFORCE_WRITE	

subroutine	ZDPlasKin_reset()	
Resets	all	data	and	configuration	except	BOLSIG+	 loaded	data,	used	as	a	part	of	
initialization	 subroutine.	 	This	has	 to	be	done	 if	many	 runs	are	programmed	 in	
the	same	code	(for	example,	if	you	want	to	make	one	run	with	a	given	pressure,	
then	another	one	with	a	different	pressure,	you	have	to	reset	ZDPlasKin).	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 15	

DATA	SAVE	AND	VISUALIZATION	OF	RESULTS	
	

In	 principal,	 users	 have	 to	 organize	 an	 output	 of	 data	 using	 standard	 FORTRAN	
capabilities.		We	encourage,	however,	saving	data	in	QtPlaskin-compatible	format.		

An	adaptive	auto	save	is	triggered	on	calling	just	after	initialization	

call	ZDPlaskin_set_config(QTPLASKIN_SAVE=.true.)			!			auto	save	in	QtPlaskin	format	
	

In	 this	 case,	 ZDPlasKin	 saves	 all	 necessary	 data	 in	 qt_*.txt	 files	 after	 every	 timestep.		
Manual	data	save	in	QtPlaskin	format	is	possible	using	

call	ZDPlaskin_write_qtplaskin(time)			!			manual	save	in	QtPlaskin	format	

The	 list	 of	 saved	 data	 includes	 temporal	 dependences	 of	 key	 parameters	 (reduced	
electric	field,	gas	and	electron	temperatures,	electron	current	density	and	electric	power	
dissipation	 per	 unit	 volume),	 density	 of	 species,	 reaction	 source	 rates	 and	 reaction-
specific	production	rates	of	species	for	sensitivity	analysis.	

User-specific	 data	 can	 be	 optionally	 saved	 using	 qtplaskin_user_names(:)	 and	
qtplaskin_user_data(:)	 arrays.	 	 These	 predefined	 arrays	 have	 to	 be	 allocated	 and	
updated	before	making	timestep	integration.		For	example:	

call	ZDPlasKin_set_config(QTPLASKIN_SAVE=.true.)	
allocate(qtplaskin_user_data(2),	qtplaskin_user_names(2))	
qtplaskin_user_names(1)	=	'my	parameter'	
qtplaskin_user_names(2)	=	'one	more	my	parameter'	
do	while(time	<	time_end)	
				qtplaskin_user_data(1)	=	...	
				qtplaskin_user_data(2)	=	...	
				call	ZDPlasKin_timestep(time,dime)	
enddo	

Generated	 in	this	way	output	can	then	be	analyzed	using	QtPlaskin	graphical	 interface	
developed	 by	 the	 TRAPPA	 group	 at	 the	 Instituto	 de	 Astrofísica	 de	 Andalucía,	 CSIC	 in	
Granada,	Spain.	 	Please	use	the	following	web	site	for	downloading	source	or	complete	
applications	for	Windows	and	Mac	OS:	www.trappa.es/content/software.	

COMPILATION	
	

In	order	to	satisfy	module	dependences	it	is	highly	recommended	to	compile	source	files	
in	the	following	order:	dvode_f90_m.F90	-	zdplaskin_m.F90	-	user_code.F90,	and	to	use	the	
BOLSIG+	binary	library	during	the	linking	stage.		This	advises	applied	to	both	command	
line	 and	 project-based	 compilations.	 	 Although	 this	 version	 of	 ZDPLASKIN	 has	 been	
tested	with	 several	 freeware	 and	 commercial	 F90	 and	 F95	 compilers,	 the	 developers	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 16	

make	 no	 guarantees	 as	 to	 accuracy.	 	 Please	 check	 section	 FAQs	 before	 contacting	 the	
authors.	

IMPORTANT:	 The	PREPROCESSOR	 translates	 the	 input	 data	 file	 into	 a	 Fortran	 code,	
and	 thus	 any	 changes	 in	 the	 input	 data	 file	 require	 that	 the	 user	 re-run	 the	
PREPROCESSOR	and	re-compile	the	generated	Fortran	code.	

Note	 to	Windows	 users:	 Linking	 to	 dynamic	 library	 bolsig.dll	 is	 usually	 handled	 by	
linking	to	an	import	library	bolsig.lib.	 	Three	different	pairs	of	dll/lib	BOLSIG+	libraries	
are	 supplied	 to	 the	 package:	 bolsig.dll/lib	 file	 contains	 all	 caps	 cdecl	 functions	
(ZDPLASKIN_BOLSIG_XXX)	 which	 is	 native	 format	 for	 Intel	 Fotran	 compiler,	
bolsig_g.dll/lib	 contains	 lowercase	 cdecl	 (zdplaskin_bolsig_xxx_)	 and	 recommended	 to	
use	 with	 Lahey/Fujitsu	 Fortran	 and	 gFortran,	 bolsig_s	 contains	 all	 caps	 stdcall	
(_ZDPLASKIN_BOLSIG_XXX@8)	and	can	be	used	with	Compaq	Fortran.	

Intel	Fortran	compiler	(checked	for	version	10.x)	
…>	ifort	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig.lib	(windows)		
…>	ifort	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig.dylib	(mac	os)		
…>	ifort	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig.so	(linux)	

gFortran	(checked	for	version	4.x)	
…>	gfortran	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig_g.dll	(windows)		
…>	gfortran	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig.dylib	(mac	os)		
…>	gfortran	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig.so	(linux)	

Lahey/Fujitsu	Fortran	95	(checked	for	version	5.x)	
…>	lf95	[options]	dvode_f90_m.F90	zdplaskin_m.F90	user_code.F90	bolsig_g.lib	(windows)		

Do	not	forget	to	set	library	search	path	
…>	export	DYLD_LIBRARY_PATH=.:$DYLD_LIBRARY_PATH	(mac	os)		
…>	export	LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH	(linux)	

FREQUENTLY	ASKED	QUESTIONS	

How	should	I	get	started	using	ZDPlasKin?	
1) Try	first	using	the	simple	2-reaction	test	case.		Execute	the	preprocessor	with	the	

kinet.inp	input	data	file	corresponding	to	the	2-reaction	test	case.		Then	compile	
the	 generated	Fortran	 code	with	 the	master	 code	we	provide	 for	 the	 test	 case.		
Execute	the	code	and	make	sure	that	your	numerical	results	are	identical	to	those	
in	our	test	case.	

2) Do	 the	 same	 test	 with	 one	 of	 the	 more	 complicated	 examples	 provided	 at	
ZDPlasKin	web	site.	

3) Then	start	adapting	the	master	codes	provided	with	these	examples	until	you	are	
familiar	with	the	various	subroutines	and	options	available.	

4) Put	together	your	own	input	data	file	and	you	should	be	ready	to	use	ZDPlasKin!	

ZDPLASKIN:	Zero-Dimensional	Plasma	Kinetics	

	 17	

What	upgrades	are	planned	for	ZDPlasKin?	
ZDPlasKin	is	not	a	commercial	project	and	it	does	not	have	any	financial	support	
at	the	moment,	so	its	future	depends	on	feedback	we	will	have	from	you.		Please	
send	us	your	comments.	

COPYRIGHT	STATEMENT	
	

ZDPlasKin	 was	 developed	 by	 researchers	 at	 LAPLACE,	 Laboratoire	 des	 Plasmas	 et	
Conversion	 d'Energie,	 a	 laboratory	 operated	 jointly	 by	 the	 CNRS,	 the	 University	 of	
Toulouse	and	the	Institut	Polytechnique	of	Toulouse.	

Dr.	Sergey	PANCHESHNYI,	former	Research	Scientist	CNRS	
Dr.	Benjamin	EISMANN,	former	PhD	student	
Dr.	Gerjan	HAGELAAR,	Senior	Research	Scientist	CNRS	
Dr.	Leanne	PITCHFORD,	Senior	Research	Scientist	CNRS	

We	are	very	interested	in	hearing	your	comments	about	ZDPlasKin.		While	we	will	make	
every	 effort	 to	 answer	 questions	 and	 help	 users	 get	 started,	 we	 cannot	 guarantee	
support.	

Users	 are	 kindly	 requested	 to	 send	 us	 copies	 of	 publications	 making	 use	 of	 results	
obtained	with	 ZDPlasKin	 for	 inclusion	 on	 the	 site.	 	 Users	willing	 to	 share	 their	 input	
chemistry	data	file	(with	proper	references	of	course)	are	encouraged	to	send	their	files	
to	us	for	inclusion	on	the	site.	

Permission	 to	 use	 ZDPlasKin	 in	 non-commercial	 applications	 is	 hereby	 granted,	
provided	that	proper	reference	is	made	in	publications	reporting	results	obtained	using	
this	software.		At	present,	the	preferred	way	to	reference	ZDPlasKin	is	as	follows	(please	
check	the	site	again	soon	for	an	updated	reference):	

	

S.	Pancheshnyi,	B.	Eismann,	G.J.M.	Hagelaar,	L.C.	Pitchford,	computer	code	ZDPlasKin	
(University	of	Toulouse,	LAPLACE,	CNRS-UPS-INP,	Toulouse,	France,	2008).	

	

ZDPlasKin	is	made	available	“as	is”,	and	assistance	and	support	are	not	guaranteed.		The	
authors	 make	 no	 warranty	 about	 the	 suitability	 of	 the	 software	 for	 any	 purpose.		
Downloading	ZDPlasKin	from	this	site	is	implicit	acceptance	of	these	conditions.		Users	
should	check	web	site	periodically	to	see	if	upgrades	are	available	or	if	errors	have	been	
reported.	 	 Users	 interested	 in	 negotiating	 a	 license	 to	 use	 ZDPlasKin	 in	 commercial	
applications	should	contact	the	authors.	

